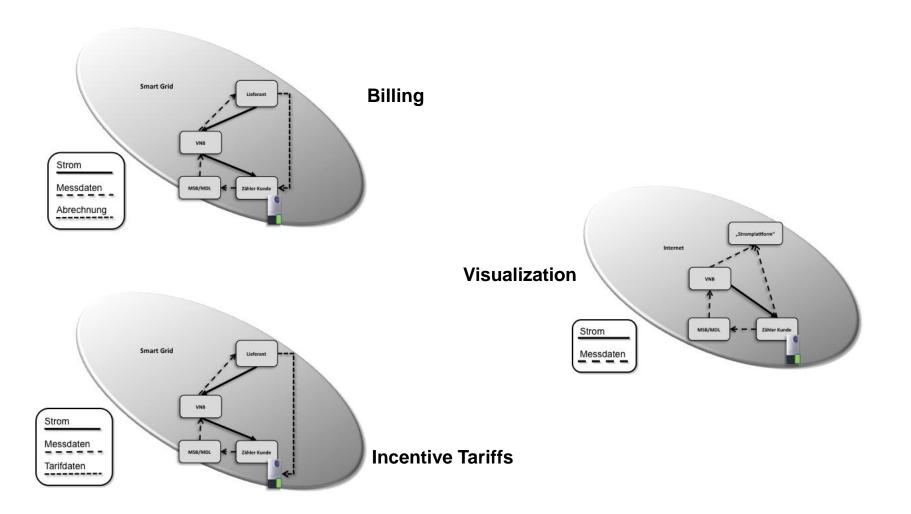


Regulatory Issues of Smart Grids

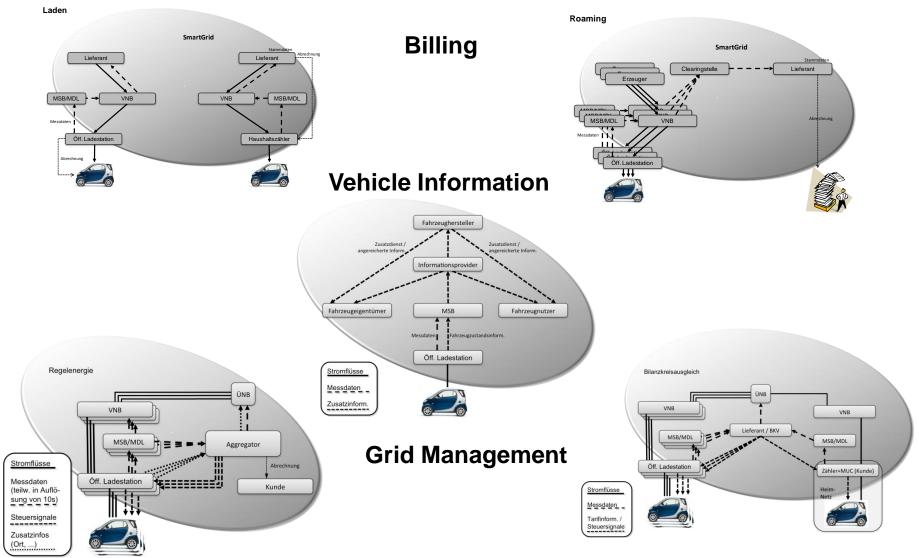
T. Bräuchle, E. Weis

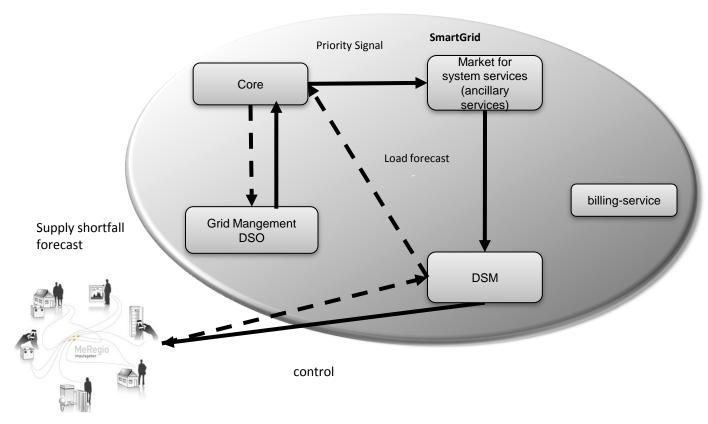
EIT ICT Labs – Smart Energy Systems Summer School 2012

Institut für Informations- und Wirtschaftsrecht (IIWR) Zentrum für Angewandte Rechtswissenschaft (ZAR)


Agenda

- Scenarios
- Energy and Calibration Law
- Data Protection Law


Today: Smart Meter (data flow based on GPKE/WiM)


Tomorrow: E-mobility (based on GPKE/WiM)

The day after tomorrow: Demand Side Management and Priority Signals

consumer/producer(provider)

Challenges

Present

- Closed market of the power industry
- "Offline" business processes

Future

- Open market with new market participants
- "Online" business processes

twofold paradigm change

Present

- Characterised trough energy (management) law
- "Offline" business processes

Future

- Integration of requirements from ICT-Law
- Transfer of requirements from the offline -world into the online-world

Need for adjustments regarding substantive and procedural law

Smart Meters

Legal aspects regarding Smart Meters

- Energy (Management) Legislation (Energy Industry Act)
- Calibration Law
- Data Protection Law

Energy and Calibration Law

Karlsruher Institut für Technologie

Metering Systems

Definition in section 21d EnWG (German Energy Industry Act)

A metering system consists of:

- a measuring instrument
- which is connected to a communication network
 (Actual use of the communication module is not necessary, the mere ability to communicate suffices)

Measuring Instrument

Communication Module

Metering System

A metering system consists of 2 at least logically separated parts.

Mandatory Installation of Metering Systems, section 21c (1) EnWG

If technically feasible metering systems have to be installed:

- in buildings, which are connected to the power grid for the first time or after a major renovation of an existent building,
- if the annual consumption of electricity by a consumer exceeds 6.000 kWh
- if an installation for producing renewable energy (EEG, KWKG) has a maximum power of more than 7 kW

If technically feasible and economically reasonable metering systems have to be installed:

In all other buildings

Starting point: Liberalisation of the measurement sector

In Germany:

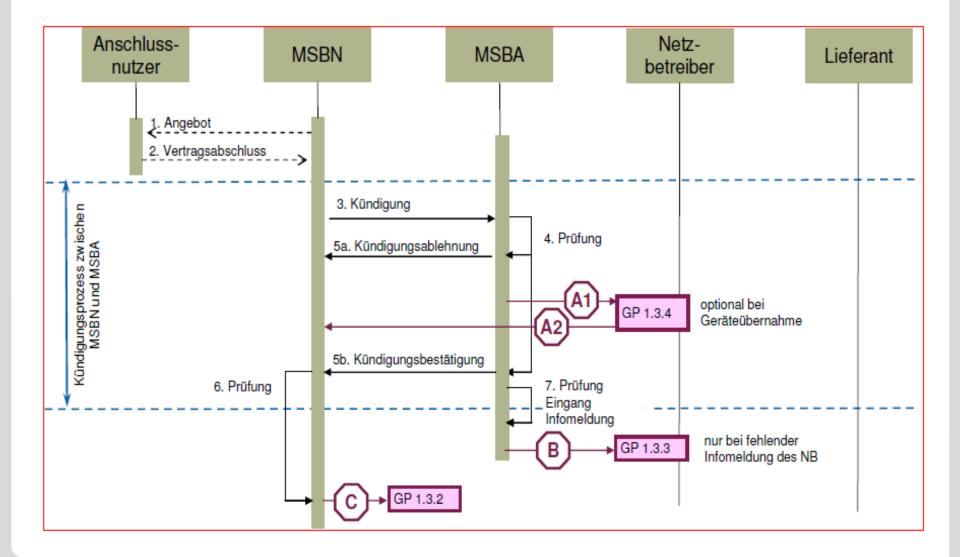
Objective: Enabling new market players to enter the market through liberalisation of the measurement sector for third party measurement service providers

12

Regulation

- The Federal Network Agency implemented (ex officio) a regulation procedure for the standardization of contracts and business processes in the measurement sector (WiM) concerning:
 - Framework contracts for metering and measurement
 - Processes which must be implemented between the market participants
 - Including a framework for electronic data exchange.

Result: binding specifications for data formats and processes to be used in the market communication


Binding effect

- The specifications defined by the Federal Network Agency are classified as a general disposition and are therefore binding for all addressees.
- Specifications can be changed with effect for the future, if certain requirements are given.
- Problem: the principle of reliance and financial investments already carried out
- Risk: De facto standards are established which are difficult to correct or change afterwards.

Regulation: Example – process model "cancellation of the metering (point) operator"

Problematic issues of the specifications concerning business processes

- The specification of the business processes address only the yet known market participants regarding the transfer of the metering data.
- Difficulties to integrate new market participants, e.g. energy service providers (directive 2006/32/EU).

16

Regulation: specification of the data formats

- Exchange of meter readings and metering data between market participants
- **GPKE**
 - Data format EDIFACT
 - Message type MSCONS

for the transfer of meter readings and metering data.

17

Problematic issues of the specification

- EDIFACT has been developed for the B2B sector
- Lacking flexibility and extensibility for new market roles
- Conversion from EDIFACT could be a "bottleneck"
- EDIFACT has no standardized transformation procedure, and is not self-descriptive

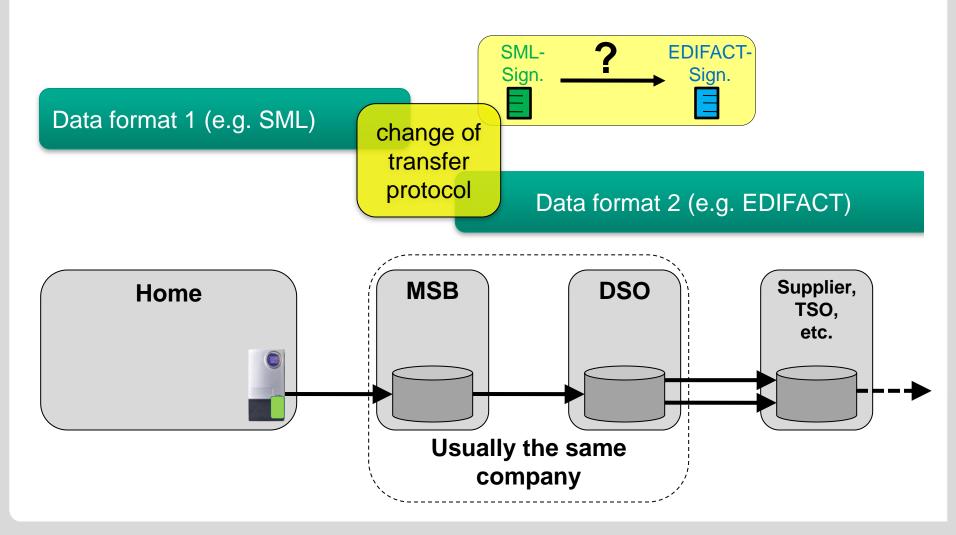
Problematic issues of the specification: Example SmartMeter - section 40 (5) EnWG – dynamic tariffs

- The offering of variable tariffs to influence the current consumption is requested by law
- Issue of calibration law:

Tariffing within metering system

 Possible with the deposit of a socalled counter register

With dynamic tariffs this is hardly practicable


Tariffing within the backend

 the load pattern recorded by the meter is matched to tariff information in the backend

The consumer needs the original signed meter data

SmartMeter: Tariffing in the Backend – Metering data communication

Smart Meter: Conversion from SML- to EDIFACT- signatures

Problem:

the current status of protocol technology does not allow lossless conversion from SML- to EDIFACT signatures

- data integrity cannot be guaranteed
- data integrity can neither be traced nor proven
- primary purpose of the signature is no longer met

Smart Meter: perspective solution for meter data communication

Home MSB DSO Supplier, TSO, etc. Usually the same company

Data Protection Law

Smart Metering: Data Protection

- Formal aspects: which laws are relevant? (e.g. "Federal Data Protection Act" - BDSG or "Energy Industry Act" - EnWG)
- Legislatory aspects: which laws and ordinances have to be adapted or newly implemented?
- Substantive aspects: which specific issues need regulation?
- Technical aspects: Protection Profiles ("Federal Office for Information Security", BSI)

24

Excursion: Basic Principles of Data Protection

Basic principle within the data privacy law:

Generally all handling of personal data is illegal, unless it is explicitly permitted.

- Permission by law or freely given consent
- Permission is required whenever personal (not anonymous) data is concerned:
 - "Personal data shall mean any information concerning the personal or material circumstances of an identified or identifiable natural person (data subject)."
- Informing the concerned person about the purpose of the data usage is obligatory

25

Substantial aspects of Data Protection regarding Smart Meter

- Lawfulness
- Data minimisation
- Consent (media break)
- Transparency (machine-to-machine communication)
- Pseudonymous use (e.g. calibration law)
- Data protection audit
- Data protection using technical or organisational mechanisms (technology vs. organisation)

Challenge:

Ensuring openness to innovation and guaranteeing legal compliance

Challenges

- Legislative acting with limited forecast horizon
- Main objectives of the climate change policy: promotion of innovation and guaranteeing fundamental rights

27

Protection concept of the EnWG

The three pillars of the "protection concept":

Substantive basis - data protection rules

→ user-centric protection concept

Government is authorised to substantiate the regulations for data protection

binding protective measures for the metering system according to the stateof-the-art (protection profile, technical directives)

→ The EnWG creates product-related Data Protection (Metering system)

Protection concept of the EnWG

The three pillars of the "protection concept":

Substantive basis - data protection rules

→ user-centric protection concept

Government is authorised to substantiate the regulations for data protection

binding protective measures for the metering system according to the stateof-the-art (protection profile, technical directives)

→ The EnWG creates product-related Data Protection (Metering system)

Permissions for the handling of personal (meter-) data (1st pillar)

Section 21g EnWG:

- No. 1: conclusion and adaption of contracts;
- No. 2: measuring of energy consumption and feeding-in of electrical energy;
- No. 3: supplying of electrical energy, including related billing processes;
- No. 4: feeding-in of energy into the power grid and related billing processes;
- No. 5: controlling of interruptible consumer equipment;
- No. 6: implementation of variable tariffs such as in section 40 (5) EnWG and visualisation of energy consumption and feeding-in of energy;
- No. 7: Determination of the state of the power grid;
- No. 8: Revelation and prevention of illegal use of services.

All current relevant energy industry processes are covered!

The problem: No consent (1st pillar)

Basic principle within the data privacy law:

- Generally all handling of personal data is illegal, unless it is explicitly permitted.
- Permission by (1) law or (2) freely given consent

The problem: No consent (1st pillar)

Challenge: Ensuring openness to innovation

- The EnWG mentions the possibility of consent in section 21g
 - Section 21g (2): relates to the personal scope
 - Section 21g (6): relates to remote measuring- and remote control
- Problem: data may not be used for other than purposes specified in section 21g!
- Openness to innovation? Future services may not use data for other than the specified purposes (prevents innovation e.g. energy efficiency services)

BSI Protection Profile (3rd pillar)

 Request by the BMWi for protection profile for smart meter to the BSI (Federal Office for Information Security)

Criticism:

- Only devices "within the house" are taken into account, whereas reliability of external entities handling the data is merely assumed.
- Process specifications of the Federal Network Agency are not taken into account.
- Implementing IT-security measures and "intelligence" into every metering device (Smart Meter Gateway) causes cost explosion
- → Need for product- and process-related technical data protection.

Types of data protected by the EnWG

- EnWG protects only meter data
 - data taken from the metering system
 - the measured consumption
 - and all linked informationen (e.g. time stamp, Meter-ID etc.)

Smart Metering System (BSI)

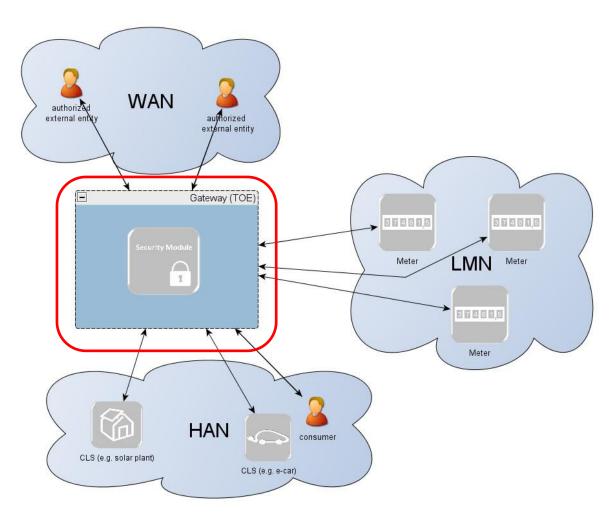
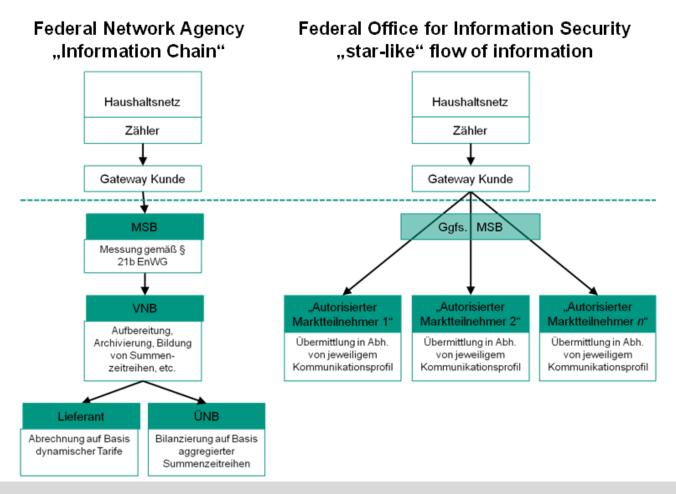



Fig. BSI-Protection Profile Smart Meter Gateway

Problem: Market communication

Federal Network Agency vs. BSI

BSI - Protection Profile (3rd pillar)

- Key Questions: personal identification and data granularity
 - **Energy supplier**: billing based on dynamic tariffs requires personalized, highly granular data
 - Other entities: lower granularity of data or pseudonymous / anonymous data might be sufficient

BSI - Protection Profile Gateway

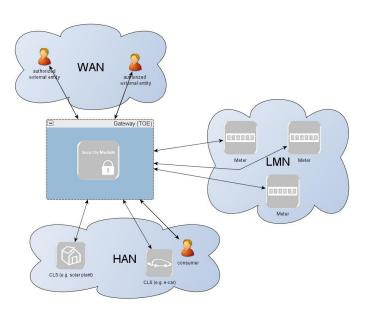
Purpose

- Minimum requirements for privacy-friendly operation
- Basis for product testing (Certificates)
- achievement of uniform safety standards and a high level of ITsecurity

BSI - Protection Profile Gateway

Functionalities of the Smart Meter Gateway

- Central communication unit in the Smart Metering System
- Central component that collects, processes and stores the meter data
- special kind of firewall to fend attacks from the outside of the Gateway
- Responsible for distribution of meter data to authorised external parties
- Communication interfaces, time service (time-stamps)
- Consumer log (contains the information about the information flows)
- "Aliasing"


39

BSI - Protection Profile Gateway

The Gateway and it's direct environment

- Connection with the LMN (local metrolocical network)
 - LMN-Meter records the consumption or production of energy in defined intervals and submits them to the Gateway
- Connection with the WAN (wide area network)
 - Only authorised external parties
- Connection with the HAN (home area network)
 - controlling of interruptible consumer equipment, CLS (controllable local system e.g. e-car or solar-panel)
 - visualisation of energy consumption

BSI - Protection Profile Security Module

Target of Evaluation:

- Security module as a "cryptographic service provider"
- Physically embedded into the Gateway and protected

Purpose:

Integrity and authenticity

Functions:

- Storage for confidential assets/cryptografic keys and further data relevant to the Gateway
- generating and verifying digital signatures

Thank you for your attention!

