

An Agency Perspectice to Cloud Computing

GECON 2014

11th International Conference on Economics of Grids, Clouds, Systems, and Services September 16, Cardiff, UK

> Frank Pallas Karlsruhe Institute of Technology / FZI Research Center for Informatics Karlsruhe / Berlin frank.pallas@kit.edu

Karlsriuhe Institute of Technology – Institute for Information and Business Law (IIWR) – Center for Applied Legal Studies (ZAR) – Research Group Compliance

compliance.zar.kit.edu

In Brief

What are the hindrances currently constraining a broader adoption of cloud computing?

How can these be understood on an abstract, theory-founded level?

What can we learn from this in matters of fostering a broader cloud adoption?

What are the hindrances currently constraining a broader adoption of cloud computing?

How can these be understood on an abstract, theory-founded level?

What can we learn from this in matters of fostering a broader cloud adoption?

A Usual Case

Cloud Provider Considers Employing

laaS, complex PaaS-Services (Redshift, Dynamo, Payment, ...)

Cloud User (e.g. SME)

A Usu	al Case		Karlsruher Institut für Technologie
	enforcement oligations	Functional requirements	Risk of data exploitation
Squeeze ou	t	Data protect	tion law
customers Optimized	Limit security efforts	Av	ailability needs
resource allocation	Cloud Provider		d User SME) Isolation from competitors
Exploit customer data	Dynamic	Promis	es toward customers
SLA- exceptions	geo- relocation	Performance needs	SLAs enforceable?
·		Must b highly "sec	

Karlsriuhe Institute of Technology – Institute for Information and Business Law (IIWR) – Center for Applied Legal Studies (ZAR) – Research Group Compliance

We would find

dozens of possible reasons

speaking against cloud computing

And for each, we would

immediately find possible countermeasures

employing technological, legal, ... instruments

"Pragmatic engineering"

Metodological Approach: Positive/Normative Economics

What are the hindrances currently constraining a broader adoption of cloud computing?

How can these be understood on an abstract, theory-founded level?

What can we learn from this in matters of fostering a broader cloud adoption?

"America has no permanent friends or enemies, only interests"

H. Kissinger

Agency Theory

Two parties: Principal and agent

Both are "opportunistic utility maximizers" → Primarily serve own individual goals

The "principal engages the agent to **perform some service on** his **behalf**, and to facilitate the achievement of the activity, he **delegates** some **decision-making authority** to the agent"

Information is "asymmetric in the sense that (1) the **agent's action** is **not** directly **observable** by the principal [...] or (2) the **agent** has **made some observation** that the principal has not made"

Furubotn/Richter (2005, p. 162)

Cloud Computing as Agency Relation

What are the hindrances currently constraining a broader adoption of cloud computing?

How can these be understood on an abstract, theory-founded level?

What can we learn from this in matters of fostering a broader cloud adoption?

Three main challanges in agency relations:

Adverse Selection

Moral Hazard

Hold-Up

Second-order problem:

Optimizing achieved loss reductions against newly incurred cost

Three main challanges in agency relations:

Adverse Selection

Moral Hazard

Hold-Up

Adverse Selection

General Problem:

- Principal must choose appropriate agent
- Principal does not know the quality of a single agent
 - Assumes "medium quality" for each agent
 - Medium "willingness to pay"

■ Downward spiral for quality and prices → "Lemons market" (Akerlof 1970)

General Approaches:

- Screening (inspections, assessment centers in job market)
- Signalling (certificates, university degrees, ...)
 - → Signals **must** be less expensive to emit for "high quality" agents
- Self-Selection (insurance contracts → Agent reveals priv. knowledge)

Adverse Selection in Cloud Computing

How do you evaluate the "quality"

(e.g. security / reliability / ... capabilities)

of a given cloud provider?

E.g. CloudHarmony

	DigitalOcean		2101		•	99.997	5%			Ŧ	1.07 mins	
	Cloudhelix VMWare Cloud Hosting		london		+	99.9971%				1	1.23 mins	
	BlueLock vCloud		indianapolis		+	99.9971%				1	1.27 mins	
Testing	GoGrid		us-west-1		+	99.997	99.9971%			1	1.27 mins	
(appi	Blue Box VPS		seattle 1		+	99.9968%				1	1.37 mins	
	Amazon EC2		ap-southeast-2		+	99.9968%				1	1.38 mins	
_	Hosting.com		san-francisco		+	99.9967%				1	1.42 mins	
Netw		suwanee		00.0067%				2	158 mins			
Service		Location	Time (secs)	# of Sa	mples	Min ms	Max ms	Std Dev	Median ms	Avg ms		
CloudSig	gma	ZRH	0.85	5		116	122	2.2%	119	118.6		
Joyent C	Cloud	us-east-1	1.06	4		207	214	1.4%	210	210		
Amazon	S3 eu-west-1		0.43 7		4	44	49	3.85%	47	46.71		
City Cloud												
City Clou	ud	london	0.49	5		66	69	1.62%	68	67.8		
City Clou		london london	0.49	5 6		66 69	69 71	1.62% 1.08%	68 70	67.8 69.83		
Flexisca				-								

1	DigitalOcean		2101	•	99.997	5%			Ŧ	1.07 mins
	Cloudhelix VMWare Cloud Hosting		london	+	99.997	L%			1	1.23 mins
_	BlueLock vCloud		indianapolis	+	99.997	L%			1	1.27 mins
sting (appr	doanu		us-west-1	+	99.9971%				1	1.27 mins
(opp)	Blue Box VPS		seattle	+	99.996	8%			1	1.37 mins
	Amazon EC2		ap-southeast-	2 🔶	99.996	8%			1	1.38 mins
	Hosting.com		san-francisco	+	99.996	99.9967%			1	1.42 mins
etw			suwanee		00.00679				2	1.58 mins
vice		Location	Time (secs)	# of Samples	Min ms	Max ms	Std Dev	Median ms	Avg ms	
	Ima	Location ZRH	Time (secs) 0.85	# of Samples	Min ms 116	Max ms 122	Std Dev 2.2%	Median ms 119	Avg ms 118.6	
udSig			. ,						-	
udSig ent C	loud	ZRH	0.85	5	116	122	2.2%	119	118.6	
udSig ent C azon	loud S3	ZRH us-east-1	0.85	5 4	116 207	122 214	2.2% 1.4%	119 210	118.6 210	
udSig ent C azon r Clou	loud S3 Id	ZRH us-east-1 eu-west-1	0.85 1.06 0.43	5 4 7	116 207 44	122 214 49	2.2% 1.4% 3.85%	119 210 47	118.6 210 46.71	
vice udSig ent C azon c Clou kiscal	loud S3 Id	ZRH us-east-1 eu-west-1 london	0.85 1.06 0.43 0.49	5 4 7 5	116 207 44 66	122 214 49 69	2.2% 1.4% 3.85% 1.62%	119 210 47 68	118.6 210 46.71 67.8	

\rightarrow Hardly efficient (screening effort vs. contract volume) for others (e.g. security-related **abilities**)

Principal

(User)

Signalling in Cloud Computing

..ISO 27001:2013

certified"

Trusted Virtual Serv

/ Geprüfte laaS Securit

TÜV Trusted

Agent

Provider)

TŪ

TRUSTI

Quality signals

→ Does, however, say nothing about actual provider conduct, only about provider capabilities!

"Offer several contract options to the agent, stimulating the agent to reveal knowledge about own capabilities"

a) Base price: X€, malus for outage / data brach: Y€
b) Base price: >X€, malus for outage / data breach: >Y€

→ "Good" Providers will choose b) – "bad" ones a)
 → No established scheme yet
 (But requires bargaining power for P and measurability)

Moral Hazard

General Problem:

- Principal is not aware of agent's actual effort
- Agent is aware of information asymmetries
 - → incentive to make low effort
- Principal can only evaluate agent based on observable outcome
- Agent will attribute good outcomes to own efforts, poor ones to adverse situational givens

General Approaches:

- Monitoring (behavior and external conditions → reduces inform. asym.)
- Bonding (guarantees, deposits \rightarrow discourages ",cheating")

How do you ensure that the provider acts in your interest

(e.g. promtly installs security patches / adheres to country constraints / does not exploit data / spends effort on availability / ...)

instead of "cheating" for own profit maximization?

Monitoring in Cloud Computing

Insight about

actual behavior + side conditions

→ "Random auditing": hardly efficient in cloud context

→ "Trustworthy event logging" / "provision of digital evidence": highly promising (esp. if including external conditions)

→ Fundamental conflict with paradigm of maximum opacity

Bonding in Cloud Computing

→ Scheme not established yet → Requires sufficient probability of shirking to be recognized (→ Monitoring)

Karlsriuhe Institute of Technology – Institute for Information and Business Law (IIWR) – Center for Applied Legal Studies (ZAR) – Research Group Compliance

32 17.09.14

General Problem:

- One party (P or A) has to make specific investments
- Once investment is done, investing party is "locked in"
- Other party can exploit (e.g. through price in-/decrease)

General Approaches:

- Long-term contracts (anticipation \rightarrow need to be sufficiently complete)
- Ensure availability of multiple, substitutable counterparties (avoid lock-in → costs for multiple specific investments)
- Non-contractual long-term relations (mutual trust, reputation, anticipated future rewards)
- Vertical integration (merge P+A \rightarrow abandon benefits from delegation)

MOTORS

Images: http://buchhol

How do you ensure that the provider does / will not exploit you

(e.g. increases prices / does not reduce prices / ...)

once you are "locked" into his services / platform?

Long-Term Contracts in Cloud Computing

Ex-ante agreements on periodic future price reductions / performance increases?

→ Questionable with regard to other potential dimensions of hold-up (service quality, ... → completeness of contracts)

 \rightarrow Conflict with concept of ad-hoc self-provisioning?

Multiple Counterparties in Cloud Computing

→ Multiple effort of adoption to specifics of several cloud providers (e.g. Amazon RedShift + xyz + abc)

Multiple Counterparties in Cloud Computing

- → Efficiently realizable for lower-level services, esp. laaS ("Cloud Federation")
- → Increasingly inefficient with increasing service specifity (PaaS, SaaS)

Karlsruher Institut für

Non-Contractual Long-Term Relations in Cloud Computing

Trust, reputation, anticipated future rewards?

Vertical Integration in Cloud Computing

Given the clear agency-relationship and the current status quo of existing countermeasures,

it seems highly rational

for many potential users not to employ cloud computing.

Measures Suggested by PA-Theory

- Audit certificates as credible signals, not as statements about actual conduct
- Novel **contract schemes** (self-selection, bonding, long-term)
- Self-conducted on-site audits
- Role of trust mechanisms for current usages of cloud computing needs further examination
- Technical mechanisms for achieving interchangeability of providers
- Technologies for providing credible information about actual conduct and external conditions ("trustworthy event logging" / "digital evidence")
- Policy Implications?

Roundup

The relation between **cloud provider and cloud user** is clearly shaped by **conflicts of interests** and **information asymmetries**.

It can therefore be interpreted as principal-agent relation.

This allows for a better, **theory-founded understanding** of the factors currently hampering broader cloud adoption, ...

... helps **discussing** commonly suggested **measures** (e.g. certifications, ...) and **forecasting their viability**, ...

... and, finally, fosters the **identification** of auspicious starting points for developing **novel instruments** as suggested by economic theory.

Outlook

NIST Cloud Computing Reference Architecture

Outlook

Leimeister ea: The Business Perspective of Cloud Computing

Outlook

Agency theory as theoretical basis for analyzing relations between different stakeholders in cloud and service scenarios

Roundup

Roundup

Contact

Frank Pallas

Karlsruhe Institute of Technology and FZI Research Center Informatics

frank.pallas@kit.edu http://compliance.zar.kit.edu

SECCRIT

SEcure Cloud computing for CRitical infrastructure IT

Research partially funded by European Commission; Research Framework Program Seven (FP7); Project SECCRIT – FP7-SEC-2012-1, Grant Agreement No. 312758 https://seccrit.eu

